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In this paper we develop an unsplit, higher order Godunov method for scalar conservation 
laws in two dimensions. The method represents an extension, for the special case being con- 
sidered, of methods developed by Colella and by Van Leer. In our method we begin with a 
piecewise bilinear representation of the solution on each grid cell. A new piecewise bilinear 
representation at the next time level is then obtained from a two-step procedure. In the first 
step, a conservative predictor-corrector scheme derived from the integral form of the dilferen- 
tial equation and characteristic considerations is used to obtain average values of the solution 
over grid cells at the new time level. Next, these new average values are then used to construct 
a limited, piecewise bilinear profile for each cell at the new time level. The resulting method is 
shown to satisfy a maximum principle for constant coefficient linear advection. Computational 
results are presented comparing the new method to Colella’s method for linear advection. The 
method is also applied to two model problems from porous media flow, miscible and 
immiscible displacement. The new scheme provides accurate resolution of sharp fronts without 
any significant distortion. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we develop an unsplit, higher order Godunov method for scalar 
conservation laws in two dimensions. The intended application of the method is the 
modeling of unstable, adverse mobility displacements in porous media. Numerical 
modeling of unstable displacements in porous media places very severe demands on 
computational methods. These problems typically entail propagating a sharp, 
unstable front. Standard finite difference methods applied to these problems 
produce smeared and wildly distorted fronts. The distortion of fronts, referred to as 
the grid orientation effect, has received considerable attention in the reservoir 
simulation literature. A variety of methods have been found that dramatically 

reduce the grid orientation effect; however, these methods typically include (either 
implicity or explicitly) a first-order dissipation term that stabilizes the front. A 
review of this literature can be found in Shubin and Bell [l]. They show that, for 
first-order schemes, grid orientation effects depend on both diffusive and dispersive 
anisotropies inherent in the discretization. This observation can be used to con- 
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struct methods that are essentially free from any grid orientation dependence. 
Unfortunately, these methods do not reduce the smearing of the front. 

A number of methods have also been proposed to reduce the smearing of fronts. 
Some of these methods are discussed in Bell and Shubin [2]. Unfortunately, these 
methods typically exacerbate grid orientation errors rather than reducing them. In 
[2], a method for reducing the smearing of fronts is developed with special atten- 
tion paid to avoiding anisotropy in the scheme. The method uses directional fluxes 
computed using a one-dimensional higher order Godunov procedure (see [ 3,4] ) to 
reduce front smearing. Although this method does reduce front smearing and suffers 
minimal grid orientation, it incorporates an inherent dissipation transverse to the 
flow. This transverse dissipation reduces the formal accuracy of the scheme to first 
order and limits its utility in more general circumstances. 

Our goal then, is to construct an unsplit Godunov scheme that is formally 
second order when unlimited (and consequently does not contain any first-order 
transverse dissipation to regularize the front) and that does not suffer grid orien- 
tation anomalies. Before discussing additional considerations relevant to develop- 
ment of the scheme, we first address the initial choice of an unsplit Godunov 
scheme. We use an unsplit scheme for two reasons. Primarily, directional operator 
splitting simply does not work well for incompressible and nearly incompressible 
flow models characteristic of porous media flow. For the model problems discussed 
in Section 5, operator splitting generates large oscillations (over 10%) and predicts 
nonphysical profiles that exhibit massive grid orientation dependence. Furthermore, 
an unsplit scheme can be used for more general types of grid systems. 

In the present context, we refer to the scheme as a Godunov scheme because 
“upwind” fluxes are computed by solving Riemann problems. Riemann problems 
play an important role in porous media flow because, in some regimes, the flux 
functions are typically not convex; hence, methods that use some type of linearized 
flux computation can fail to adequately predict nonlinear dynamics. 

We will not attempt to develop a method for general systems of conservation 
laws. (In fact, the method we define cannot be easily generalized.) Instead, we focus 
on scalar conservation laws of the form 

St + (~s(~))x + (%(S)), = qh(s), (1.1) 

where (a, u) represents a spatially dependent velocity field. The right-hand side 
represents sources and sinks of fluid of strength q(x, y) and composition h. (The 
function h may also contain explicit spatial dependence; however, we suppress that 
dependence to simplify the notation.) We assume incompressibility so that 

u, + vy = q; (1.2) 

inclusion of compressibility is straightforward. Equally obvious is the extension of 
the method to diagonalizable systems of conservation laws. The framework of (1.1) 
is adequate for a wide variety of porous media flow problems. For example, for 
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area1 simulation in which gravitational forces are ignored, the two fluxesfand g are 
always the same so that the system is diagonalizable. Even when gravitational 
effects are included, several systems of interest are diagonalizable. 

Other authors have also pursued the development of unsplit, higher order 
Godunov methods. Colella [S] derives a scheme using Taylor series expansions to 
obtain higher order accuracy. Van Leer [6] independently obtains essentially the 
same scheme from a convection principle. However, both of these authors treat 
general systems of conservation laws. Thus, their methods focus on more general 
issues than are required for porous media flow. Colella’s scheme can, however, be 
directly applied to (1.1) and will be used for comparison purposes in the later 
sections. 

In addition to the form of the equation given by (1.1 ), the intended application to 
modeling porous media flow imposes certain additional constraints on the design of 
the method. Foremost, the velocity field in (1.1) is determined by solving an elliptic 
pressure equation at each step of the calculation. The linear algebra costs associated 
with this elliptic equation consume the bulk of the computational cost; hence the 
method used to solve (1.1) can be fairly complicated without noticeably affecting 
the overall computational time. Also, since the velocity is being determined from a 
finite difference pressure equation we typically obtain only an average normal 
velocity over the edges of grid cells. Therefore, we will assume, for the development, 
we are only given constant normal velocities along each edge. Furthermore, the 
velocity field need not be continuous. In particular, at sharp fronts and across 
changes in material properties, the tangential component of velocity is discon- 
tinuous. These properties will be explicitly reflected in details of the method to be 
discussed in Section 2. When the velocity field is known more precisely or is known 
to be smooth the formalism developed in the next section can easily be modified to 
account for the additional information. 

The new scheme is based on a piecewise approximation to the conserved variable. 
In a rough outline form, the algorithm begins with a bilinear approximation to the 
solution on each grid block. The quasilinear form of the differential equation is then 
used to estimate the average value of s on the edges of the grid cells during a time 
step. For each edge, average values from the cells on either side provide initial data 
for an appropriate, one-dimensional Riemann problem. The state which propagates 
with zero speed in the Riemann problem solution is used to evaluate the numerical 
flux through the edge. These numerical flux values are then used in a conservative 
difference scheme to obtain average values over each cell at the new time level. An 
interpolation procedure with a suitable limiting algorithm is then used to construct 
a new bilinear profile from the new cell averages. 

In the next section of the report we develop the basic predictor-corrector form of 
the scheme. In Section 3, we discuss the construction of piecewise bilinear profiles 
for the solution on the grid cells from cell averages. In Section 4, the method is 
tested on two constant coefficient linear advection problems, propagation of a 
smooth profile and propagation of a square pulse. The method is also tested on two 
variable coefficient advection examples. In Section 5, the method is applied 
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to adverse mobility miscible and immiscible displacement problems. The paper 
concludes with some final remarks about the algorithm. 

2. SCHEME DEVELOPMENT 

In this section we develop the basic predictor-corrector form of the scheme from 
the integral form of the differential equation. We will present the corrector first; the 
requirements of the corrector motivate the predictor step. For simplicity we assume 
a cell-centered, rectangular grid with constant dx and dy. For grid block B, we 
denote by i + 4, j and i - 1, j the right and left edges and by i, j + 4 and i, j - f the 
top and bottom edges. As noted above we assume that we only have average values 
of u at the left and right faces and that we only have values of u at the top and bot- 
tom faces. We also assume that the source strength, q, is given only in terms of cell 
values qii. The discrete velocities are assumed to satisfy a discrete analog of (1.2); 
namely, 

u.x.ij + u,,v = ui+ l12,j-“i- l/Z,j 
+ 

Oi,j+ 112 - vi,j- l/2 

Ax AY 
= qii. (2.1) 

The corrector, which is the same as that used by Colella [S], is obtained by 
integrating (1.1) over Bvx (t”, tn+’ ) and applying the divergence theorem. If we 
denote by 3% the average value of s on block B, at time t”, we obtain 

(2.2) 

where F and G represent the average values of the respective fluxesfand g over the 
appropriate faces and H,q, represents a space-time volume average of the source 
term. Equation (2.2) does not contain any approximation (except for the aforemen- 
tioned assumptions on the velocity field); the accuracy of the scheme is determined 
by the representation of the initial distribution and by the accuracy of the com- 
putation of the flux averages F and G and of the source term H. For the examples 
considered in this paper, the Hq-terms are localized and quite simple. A 
straightforward treatment was found to be adequate for the cases considered. 

Thus, the essential ingredient of the procedure is the computation of the 
numerical fluxes Fi+ 1,2,j and GLj+ ,,2. The remainder of this section is devoted to 
the predictor step in which we estimate these values. Our approach is based on the 
geometry of the characteristic surfaces as proposed by Van Leer [6] rather than 
the more formal approach used by Colella [S]. We assume that we are given a 
piecewise polynomial profile for s in each grid block. The geometry of the 
characeristic surfaces is used to estimate the average value of s reaching each edge 
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during a time step. For each edge there are two separate estimates; one from each 
of the blocks that share that edge. 

For concreteness, we consider the treatment of edge-i+ 4, j. Other edges are 
treated analogously. In this case the objective of the predictor step is to estimate 
averages values on edge-i + f, j using the equation linearized about sij to obtain 
‘f+ l/2 j and linearized about si+ I,j to obtain SF+ l,2 j. Amibiguities in these states are 
resolved by solving an appropriate Riemann ‘problem (or, in more general 
circumstances, some suitable approximate flux computation). 

We will only give the computation of $+ I,2,j; si”, l,2,j is analogous. To compute 
'f+liZj , we linearize Eq. (1.1) in the direction normal to the edge to obtain 

st + Ui+ 1/2,jf'sx + (%)y + ux,ijf- 4ijh = OT (2.3) 

where f’ is evaluated using the average block sij and u,,~ is computed as in (2.1). 
For purposes of the derivation we assume that ~~+~,~,~f’(s~) is strictly positive. The 
modifications to the final predictor formulae when this is not the case will be 
indicated later. (Note that we would like to linearize the system about values at the 
interface where we have evaluated the velocity; however, technical considerations 
regarding systems necessitate linearization about cell averages.) We have not 
linearized the derivative terms transverse to the edge. This allows a more accurate 
representation of the transverse flux. 

The estimate for the predictor is obtained by integrating (2.3) over the space-time 
region ABCDEF indicated in Fig. 1. This region is determined from the charac- 
teristic domain of dependence of (2.3). In particular, all characteristics traced 
backward in time from the edge BCEF intersect either the base rectangle ABDE or 
one of the triangular regions ABC or DEF. Furthermore, any characteristic traced 
forward in time from the ABDE to either intersects the edge BCEF of one of the 
triangles. 

Thus, to estimate sf+ ,,2,j we form 

IS s sI + ui+ 1/2,j f’s, + tug), + of- q,h dx dy dt = 0. 
ABCDEF 

We now integrate (2.4) by parts, noting that ui+ 1,2,jf’ is a constant 
obtain 

Ui+ 1/2,jf' At AY $+ I/z,j= 'i+ ll2,j f' ffBCEFS dy dr = ffABDES dx dy + ffABC 

(2.4) 

in (2.3) to 

vg dx dt 

- s I vg dx dt - f I s ABCDEF q,h - u.x,J dx 4 dt. (2.5) 
DEF 
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FIG. 1. Characteristic domain of dependence of edge i + l/2, j, x - y coordinates specified relative to 
block center. 

Two of these integral terms are treated in straightforward manner. Since we are 
assuming that at t”, s is represented by a bilinear function, the integral over ABDE 
is exactly computed using the midpoint rule. Thus, we have 

s dx dy = ui+ 1,2,jf’ At Ay sw 

where 

s M= S~+(AX-ui;l/2.jf'Af)S.i). 
( 

The volume integral in (2.5) is evaluated at the midpoint of ABDE. The non- 
linearities in h and f preclude the use of more accurate temporal quadrature rules. 

If we substitute these formulae into (2.5) we obtain the predictor equation 

sf+ l/Z,j = s&f + + (q&&f) - %,ijf(SM)) + &(r- -r+), (2.6) 
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where r- and r+ represent the average values of the flux ug over the triangles 
ABC and DEF, respectively. The only modification required when Ui+ l/z,jf' is 
negative (in which case sM lies outside block B,) is to replace sM by its projection 
onto block B,, namely, s,+ (AX/~) s,,~. 

To complete the procedure we must evaluate the integrals of vg over the triangles 
ABC and DEF. We restrict the development to the integral over DEF; the other is 
computed in exactly the same way. Note that the integrand for this term represents 
the nonlinear flux in the y-direction. For this reason we estimate an average value 
of s using linearization on each of the cells bounding the edge containing the 
triangle and solve an appropriate Riemann problem to estimate the flux. Thus, the 
integral over DEF is, itself, computed in a two step process. 

The initial step of the process is to estimate the average value of s on the triangle 
as predicted from block ij and block i, j + 1. We discuss only the estimate for 
block-& To obtain this estimate we use the quasilinear form of the equation 

st + ui + l/Z,j f'S.x + oi,j+ 1/2g'Sy +fux,g+gvy,,- q,h ~0, (2.7) 

where the derivative term f' and g’ are evaluated at sij. We are assuming for the 
development that both uf' and ug’ are positive; the necessary modifications when 
this is not the case are discussed later. 

We can now proceed as in the previous case and integrate (2.7) over the 
tetrahedral region DEFG, depicted in Fig. 2, that is determined by the domain of 
dependence of DEF. If we now integrate by parts we obtain 

SL 
1 =- 

DEF- m(DEF) 
s dx dt 

1 
= m(DEG) 

sdxdy+ l.r DEFGfUX.ij+guy.ij+qijhdxdydt . (2.8) 
> 

As before we evaluate the volume term in (2.8) using the midpoint rule in space and 
explicit Euler in time to obtain 

fu,+go,- qh dxdydt 

where s, is the value of our piecewise bilinear representation of s at time t” 
evaluated at the midpoint of DEG which is located at the (x, y) point 
(Ax/2 - 2At uf’/3, Ay/2 - At ug’/3) (relative to the cell center). 

The integral of s over DEG can also be computed to the required accuracy using 
the midpoint formula and, we have, in fact, used that procedure for the linear part 
of our solution representation, However, although it is second-order accurate the 
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FIG. 2. Characteristic domain of dependence of triangle D/3, x -y coordinates specified relative to 
block center. 

midpoint rule does not integrate the bilinear term exactly. To exactly integrate the 
bilinear term we have used the midpoints of each of the edges of DEG for 
integration of the bilinear term. (Of course, all of the integrals over DEG could 
have been evaluated using the edges of the sides. The major reason why this was 
not done is historical; however, it would also have required more function 
evaluations.) As before, when one of the quadrature points falls outside the grid 
block we project it back onto that grid block. 

A similar procedure is used to estimate s&. However, it should be noted that in 
this case the analog of DEG will not, in general, be a right triangle. This is because 
one vertex of the triangle is determined by the wave speed in B, whereas one of the 
others is determined by the wave speed in Bi,j+ ,. Once S& and sgEF are deter- 
mined, P is determined by solving an appropriate Riemann problem. More 
precisely, 

where sDEF is defined by 
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where R,(#, sR,x/t) represents the state that propagates with speed x/t in the 
Riemann problem solution for s, + g(s)X = 0 with initial left and right states given 
by sL and sR. 

We can now describe the computation of the numerical flux values appearing in 
the corrector step (2.2). Given the left and right estimates $+ 1,2,j and sf+ 1,2,j, we 
define F,, rlzj as f($$/l,2).), where 

sy+ 112 = 

i 
R/is:+ 1/2,jy si”, 1/2,j> 0) if Ui+ l&j > 0 

I + Il2,j 
Rf(siR, 1/2,jp ‘f+ l/Z,jy ‘1 if ui+I/2,j<“, 

where R, is defined analogously to R,. 
Before discussing the construction of piecewise bilinear profiles from the cell 

averages, is will be useful to make a number of remarks about the predictor-correc- 
tor formulation. First, we have assumed that the normal velocity was constant 
across the blocks in determining the characteristic domain of dependence of the 
edges of the grid cells. (However we have included a finite difference approximation 
to the normal velocity derivative in the linearization.) For the intended applications 
the velocity normal to each face is smoothly varying in the direction normal to the 
edge so that this is a reasonable approximation. If the structure of the velocity is 
available by some means (for example, from a finite element velocity computation) 
and the structure of the velocity is considered important for the particular 
application, this variation can be included in the predictor step; however, this 
introduces considerable complication into the method. 

We have not assumed that the velocity normal to an edge varies smoothly 
tangent to that edge; in particular, we have allowed for discontinuous jumps in the 
velocity from block to block. (This can occur in reservoir simulation calculations 
because of discontinuous variations in material properties.) This gives the scheme 
an interesting property for linear advection. The triangular region on edge i, j + -j 
used in projecting s:+ ,,2,j is not the same as the triangular region on that face used 
in predicting sl”, ,,2,j + 1. The material that flows through edge i + t, j + 1 that came 
from block ij is not equal to the transverse flux correction in the predictor for 
i + $, j for flow through edge i, j + 1. 

We have defined the procedure assuming a bilinear representation of the solution 
on each cell. (We can obtain a linear scheme by setting the bilinear term to zero.) 
However, since the predictor has been reduced to quadratures, the entire procedure 
could equally well be applied to any representation that is desired, e.g., higher order 
polynomials. However, as noted by Colella [7], the predictor-corrector form is 
inadequate for polynomials of degree higher than two. 

The final remark concerns the particular form of the scheme when reduced to 
constant coefficient linear advection. For this special case, all of the integrals in the 
predictor step of the method are exact. Thus, for this case the method corresponds 
to exact advection of the piecewise bilinear profile and its subsequent reaveraging 
onto the grid (analogous to Van Leer’s procedure for a linear profile [6]). This 
assures that the method satisfies a maximum principle provided the profile 
reconstruction phase does not introduce any new extrema. 
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3. PROFILE RECONSTRUCTION 

In this section we describe the procedure used to construct the piecewise bilinear 
representation of the solution from the cell averages. This is accomplished in two 
steps. First, a high order accurate interpolation of the solution is obtained from 
which derivatives can be estimated. Then a limiting procedure is introduced that 
forces the tit profile to satisfy a maximum principle. 

A variety of approaches can be used to construct the initial bilinear profile. The 
performance of the scheme is relatively insensitive to the method that is used; the 
limiting is the crucial step. The particular approach we have taken is a multidimen- 
sional analog of the procedure used by Colella and Woodward [S]. The idea here 
is that for block B, we interpolate points values at each corner i &- 4, j+ 4 from 
neighboring cell averages. Appropriate difference formulae can then be used to 
compute the required x, y, and xy derivatives. The interpolations will be based on 
fourth-order formulae so that the computed xy-derivative is second-order accurate. 
(This represents overkill to some extent; however, this stage of the computation is 
very inexpensive so it is not really disadvantageous.) 

The interpolation formula used is obtained by finding the bicubic polynomial 
whose cell averages coincide with cell averages for the sixteen cells surrounding the 
corner. The value of that polynomial at the corner point gives the required value. 
For equally spaced grids this formula is given by 

Si+I/2,j+I/2=(S~- I+1 -7(si,j+l +si+I,j-1)+si+2,j&1 

- 7si- I., + 49(si.j + Si+ 1.j) - 7si+ 2.1 

- 7si- I,j+ 1 + 49(si,j+ 1 + st+ I,j+ 1) 

which is nothing more than the tensor product of Colella and Woodward’s formula. 
These four corner values then determine a bilinear representation of the solution on 
the grid. Note that this bilinear function does not, in general, give the correct cell 
average. 

Conceptually, the limiting process corresponds to finding the bilinear function 
closest to the function determined by interpolation that satisfies some collection of 
limiting constraints. (The limiting process is performed on each block 
independently; there is no interblock coupling at this stage of the algorithm.) This 
process can be viewed from two different perspectives. One may view the process in 
terms of adjusting the derivatives determined from the initial corner values or one 
may view the process as adjusting the corner values themselves. We will take the 
latter approach because it is conceptually simpler and more easily lends itself to 
approximation. 

In terms of the corner values the limiting constraints we want to impose require 
that the average over the cell be preserved and that the interpolation procedure not 
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introduce any local extrema not present in the neighboring cell averages. For block 
B, we lets--, s+-, SK+, and s++ denote the bottom-left, bottom-right, upper-left, 
and upper-right limited corner values, respectively. Then the desired constraints are 
that 

Sii= (s++ +s+- +s-+ +s--) 
4 

and 

ai- 1/2,j- l/2 d s-- Q Bi- 1/2,j- l/2 

ai+ 1/2,j- l/2 G s+ ~ 6 Pi+ 1/2j- 112 

ai- 1/2,j+ l/2 G s- + Q Pi- ljZ,j+ 112 

cli+ IjZ,j+ l/2 ds+ + 6 Pi+ 1/2,j+ 1123 

(3.1) 

(3.2) 

where 

@i+ l/Zj+ i/2 =min(sij~ $i+ l,j? si,j+ 19 si+ I,j+ 1) 

and 

Pi+ l/Z,j+ l/2 = max(s,, si+ lj3 si,j+ 13 Si+ I,j+ 11% 

Our procedure for adjusting the corner values to satisfy these constraints is based 
on a fairly simple heuristic idea. First, we subtract an appropriate constant from 
each of the corner values so that the cell average is correct, i.e., (3.1) is satisfied. We 
then adjust each of the corner values so that the inequality constraints (3.2) are 
satisfied. Unfortunately, (3.1) will no longer be satisfied. 

The question remains as to how the excess (deficit) should be distributed among 
the other values. Our approach is to attempt to equidistribute the excess (deficit) 
among all of the other points subject to not causing any value to violate its 
inequality constraint. This can be done in a simple vectorized manner by making 
several passes over the points for equidistributing the values. 

The limiting procedure described above is, admittedly, based on a very simple 
heuristic algorithm. To test its effectiveness, we make precise the notion of “closest” 
by seeking the bilinear function closest to our originally fit function in L2. The 
limiting process then reduces to a quadratic minimization problem subject to con- 
straints (3.1) and (3.2). We can then test the performance of our heuristic procedure 
by comparing its results to results obtained where the limiting was done by actually 
solving the minimization problem. For a variety of tests for linear advection, the 
heuristic procedure obtained results within 10% of the minimization procedure in 
terms of overall I’ error. 

From the description of the limiting procedure, the first step in which the values 
are adjusted to have the correct cell average appears to be superfluous. However, 
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this step was found to be necessary to obtain good performance from the method. 
We conjecture that this initial step is, in most cases, sufficient for the limiting. The 
effect of suboptimal performance of the redistribution algorithm is then reduced in 
the overall limiting algorithm. 

4. LINEAR ADVECTION 

In this section we test the method developed in the previous sections on the 
linear advection equation 

s, + (us), + (us), = 0. 

First we perform a convergence study for two constant coefficient examples: advec- 
tion of a smooth bump and advection of a sharp pulse. The new method is com- 
pared to Colella’s method [S] for velocity fields at two different angles to the grid. 
At the end of the section, we compare the new method to Colella’s method on two 
variable coefficient advection problems: a problem introduced by Zalesak [9] and 
advection of a smooth bump. 

First, let us summarize Colella’s scheme. (For a more complete discussion see 
[S].) Colella fits x and y slopes using a one-dimensional slope limiting procedure; 
no attempt is made to ensure that the resulting plane does not introduce new 
extrema. His scheme also uses a different procedure for computing the transverse 
flux corrections in the predictor (T’s). He first considers simply using Godunov’s 
first-order method using cell averages which we will refer to as the lower order 
transverse flux (LOTF) approximation. For strongly nonlinear waves he advocates 
using a one-dimensional higher order Godunov procedure that accounts for trans- 
verse gradients in computing the transverse flux (HOTF). As will be seen, this 
correction improves the performance of the scheme even for constant coefftcient 
linear advection. However, it should be noted that neither version of his scheme 
satisfies a maximum principle, even if an additional limiting step is introduced to 
force the planes determined by the x and y slopes to satisfy the inequality con- 
straints (3.2). 

Before discussing the examples, some remarks about the relationship of the 
schemes are merited. When reduced to the case of constant coefficient linear advec- 
tion, there are basically two differences between our scheme and Colella’s schemes. 
First, our scheme uses the bilinear term whereas his do not. Inclusion of the bilinear 
term can have two effects on the algorithms. In the actual predictor-corrector 
scheme, the bilinear term only enters in the estimation of the transverse flux correc- 
tion term. It is easy to see that its contribution to the scheme will be maximized for 
flow along the diagonal of the grid; as the angle the velocity field makes with the 
grid lines goes to zero the effect of the bilinear term goes to zero. 

The other effect of the bilinear scheme is to reduce the amount of limiting of the 
x and y slopes required to satisfy (3.2). However, Colella’s scheme makes no 
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attempt to satisfy corner conditions such as (3.2). Thus, for accuracy considerations 
on linear problems, the effect of the bilinear term is to help recover some of the loss 
incurred from limiting to satisfy the corner contraints. 

Our first examples are for constant coefficients. We consider two different sets of 
initial data: a discontinuous diamond profile given by 

44 Y, 0) = ;; L 
if 1x1 + (yl GO.25 
if 1x1 + J yl > 0.25 

and a smooth bump given by 

s(x, y, 0) = ,-60(x2+y2). 

For each initial profile we take u = 1 and consider two different values of U, namely, 
u E 1 and u E 0.2. We solve each problem with Ax = Ay to t = 1 at CFL = f and 
measure errors in 1’; i.e., 

E= Ax Aye IQ-s(xi, yj, l)[. 
q 

The computational results for the discontinuous data are summarized in Table I. 
The results obtained with Colella’s scheme are not monotone. For u = 1.0 the 

scheme exhibits roughly 5 % overshoot and undershoot. For u = 0.2 the undershoot 
and overshoot are reduced to roughly 1.7%. For discontinuous initial data the 
errors are dominated by the effects of limiting; thus, we see ony a modest reduction 
in error (IO-20%) with the bilinear scheme. To provide a more detailed 
examination of the approximate solutions, in Fig. 3 we plot contours from 0.1 to 0.9 
for the exact solution and for each scheme for u = 1.0 and Ax = 0.5. For com- 
pleteness we also show results obtained using Colella’s scheme with lower order 
transverse fluxes. For all of the methods the fronts are considerably smeared; 
however, the bilinear scheme does a better job of preserving the shape of the initial 
data than do the other methods. Note that the use of the higher order transverse 
flux term greatly improves the performance of Colella’s method. 

TABLE I 

I’ Errors for the Diamond Example 

Ax Bilinear Scheme ColeIIa Scheme-HOTF 

u= 1.0 0.05 6.24E- 2 7.31E- 2 
0.025 3.47E-2 4.20E- 2 
0.0125 1.97E - 2 2.52E-2 

0 =0.2 0.05 5.816-2 6.266-2 
0.025 3.24E-2 3.508-2 
0.0125 1.858-2 2.02E- 2 
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FIG. 3. Coarse grid numerical results fo advection of a diamond. 

We now repeat the same computational experiments using the smooth initial 
data. Errors obtained for this case are summarized in Table II. For smooth initial 
data the effects of limiting are substantially reduced and we see a dramatic 
improvement in resolution for the bilinear scheme. Although Colella’s scheme still 
exhibits minor undershoot for this example on coarse grids, the effect disappears as 
the grid is relined. We again show, in Fig. 4, the solutions obtained with the two 
methods and with Colella’s scheme using lower order transverse fluxes on the coar- 
sest grid. In all cases, the approximate solution has been dissipated considerably. 
However, the bilinear scheme is doing a good job of maintaining the shape of the 
profile compared to the other schemes. 

TABLE II 

[’ Errors for the Smooth Example 

Ax Bilinear Scheme Colella Scheme-HOTF 

u= 1.0 0.05 9.228 - 3 1.39E- 2 
0.025 1.37E- 3 4.44E - 3 
0.0125 1.77E-4 l.O8E-3 

” = 0.2 0.05 7.55E - 3 l.OOE-2 
0.025 1.29E-3 2.868 - 3 
0.0125 2.616-4 6.32E-4 
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FIG. 4. Coarse grid numerical results for advection of a smooth bump. 

In the next two examples we test the method on advection in a divergence free 
velocity field. The first example, taken from Zalesak [9], is a cylinder that is 15 
cells in a radius that is located 25 cells from the origin. In the cylinder, a slot has 
been cut that is live cells wide extending from near the origin toward the outer edge 
of the cylinder leaving a five-zone-wide neck at the outer edge of the cylinder. The 
velocity field is given by 

u= -y 

v = x. 

(See Zalesak’s paper for more details.) In our implementation we have not 
smoothed the cylinder by any type of averaging procedure; we simply assign an 
initial value for each cell based on the location of its center. We have performed the 
calculation using the bilinear scheme and Colella’s HOTF scheme with a global 
CFL slightly less than one. (This makes the CFL value approximately one half at 
the center of the cylinder.) Computational results after one quarter revolution and 
after one complete revolution are shown in Fig. 5 and Fig. 6. At the end of one 
complete revolution Colella’s scheme exhibits roughly a 2% undershoot. The 
bilinear scheme offers a number of improvements over Colella’s scheme. The 
resolution of the fronts has been improved. A larger portion of the sides of the 
cylinder on either side of the slot has been preserved. The slot has filled in 

581/74/1-Z 
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TRUE COLELLA HOTF SCHEME 

BILINEAR SCHEME 

FIG. 5. Numerical results for Zalesak’s example after one quarter revolution. 

COLELLA HOTF SCHEME 

BlLlNEAR SCHEME 

FIG. 6. Numerical result for Zalesak’s example after one complete revolution. 
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somewhat less and more of the neck is maintained. Furthermore, the bilinear 
scheme does a better job of preserving the shape of the slot: Colella’s scheme causes 
the slot to distort slightly to the right near the neck. The error in I’ is reduced by 
about 17% for the bilinear scheme. 

Our final linear advection example uses smooth initial data given by 

s(x, y, 0) = ,-3wx2+ (Y- 1m. 

We use the same velocity field and time step as the Zalesak example with 
dx = dy= 0.01. Contour plots of the computed solutions after one complete 
revolution are shown in Fig. 7. Again, both the resolution and the shape of the 
profile are improved with the bilinear scheme. For this example the error is reduced 
by 50% for the bilinear scheme. 

5. RESERVOIR SIMULATION 

In this section we apply the scheme developed in Sections 2 and 3 to model 
problems arising in petroleum reservoir simulation. Both problems are charac- 
terized by unstable fronts that arise by displacing a resident fluid with a less viscous 
invading fluid. In each case we require the solution of an elliptic pressure equation 
as well as a hyperbolic conservation law of the form of (1.1). The first problem 
assumes that the two fluids are completely miscible. For this problem the conser- 

TRUE COLELLA HOTF SCHEME 

I I 

BlLlNEAR SCHEME 

FIG. 7. Numerical results for rotation of a smooth bump. 
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computation. For the computations present in this paper we have used a finite 
difference analog of Galerkin’s method. More precisely, the difference equations 
used for (5.1) are 

where 6: and $ are the usual undivided second difference operators. 
The frontal instabilities associated with this problem for high mobility ratios 

require that the structure of the solution within grid cells be modeled in the 
pressure equation. We define K/p coefficients in the pressure equation using an 
integral harmonic average; i.e., 

=2AxA,(jjB 
‘I 

;dxdy+ jjB,+,,,$dxdy)-‘. (5.4) 

The use of harmonic averages is suggested by physical principles and by the 
analogy between block-centered discretizations of elliptic equations and the finite 
element mixed method. (See Weiser and Wheeler [11] for details.) We perform the 
integrations in (5.4) using Simpson’s rule normal to the edge and the midpoint rule 
parallel to the edge. This allows us to incorporate the gradient of the approximate 
solution normal to the edge, as determined by the limited slope calculation, into the 
pressure coefficients. (We use midpoint integration parallel to the edge for two 
reasons. First, the normal gradient is physically more important in determining the 
velocity. Second, by using the midpoint rule we do not introduce quadrature points 
for Colella’s scheme that have nonphysical values of concentration because of the 
one-dimensional nature of his limiting scheme.) 

The pressure discretization implicitly defines a discrete divergence operator. 
We want to define the velocities used in the computation so that they will be 
compatible with this discrete divergence operator. This gives 

ui + 1/2,j = -(I+~)((~i+,,2,jpi+~~~~) 

with ui,j + l/2 defined analogously. 
Exhaustive study of miscible displacement is beyond the scope of this paper. We 

will confine our computational experiments to assessing the grid orientation depen- 
dence of the schemes. Our tests will be made on a repeated five-spot pattern depic- 
ted in Fig. 8. We choose the dispersive mixing lengths so that the longitudinal and 
transverse Peclet numbers are 100 and 1000, respectively. (The length scale used in 
this computation is the distance from injector to producer divided by ,/?.) These 
values correspond to the values suggested by Russell and Wheeler [lo]. 
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FIG. 8. Repeated Iivespot well pattern. 

For this particular well pattern there are two different computational grids that 
can be used, commonly referred to as the diagonal and parallel grids because of 
their relative orientation to the primary flow path from injector to producer. For 
our comparisons we will use a 40 x 40 diagonal grid and a 56 x 56 parallel grid 
(which gives approximately the same size grid cell). At this level of resolution the 
results of the bilinear scheme appear to compare favorably to fine grid results 
obtained by Russell et al. [12]. 

In Figs. 9-11, we show computational results for M= 10,20,40 for Colella’s 
scheme with higher order transverse fluxes and for the bilinear scheme. The times 
for each case are chosen to be just before the finger breaks through to the produc- 
tion well. We have found that this is the most sensitive part of the calculation. At 
M= 10, both schemes perform fairly well, however, for Colella’s scheme, the finger 
has penetrated further on the parallel grid. At M = 20, the results for the bilinear 
scheme are still in excellent agreement; results with Colella’s scheme are beginning 
to deteriorate markedly. Finally, at M= 40, we begin to see some discrepancy in 
the results obtained with the bilinear scheme. The linger has penetrated somewhat 
further on the parallel grid than on the diagonal grid. Results using Colella’s 
scheme have become quite distorted. The diagonal grid results show a nonphysical 
bowing of the linger along the sides of the grid. On the parallel grid the scheme 
predicts breakthrough to have already occurred. 

Immiscible Displacement 

Our final example demonstrates the performance of the scheme on a problem 
that has nonlinearities. This problem also characterizes a two component, incom- 
pressible flow; however, in this case the fluids are assumed not to mix. We let sub- 
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COLELLA HOTF SCHEME COLELLA HOTF SCHEME 

BILINEAR SC-EM 

PARALLEL 

BILINEAR SCNM 

DIAGONAL 

FIG. 9. Numerical results for miscible displacement at 0.45 PVI, M= 10. 
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FIG. 10. Numerical results for miscible displacement at 0.45 PVI, M= 20. 
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DIAGONAL PARALLEL 

FIG. 11. Numerical results for miscible displacement at 0.45 PVI, M 

script o refer to oil and w refer to water. For this problem, the equations describing 
the flow are 

-V.(II,+A.,)Vp=V.v=q 

s,+V*vf(s)=qh, 

(5.5) 

(5.6) 

Here, s is the saturation of water, v is the total velocity, 1, = K(1 - s)~/P~, 1, = 
fi2hwp f=(Ll(~w+U)~ and qw represents the wells. We assume that the 
viscosities 11, and pw are constant (,L,/P~ = 4), and we have specialized to quadratic 
relative permeabilities. For this problem we ignore capillary pressure which 
introduces a small nonlinear diffusion term. The pressure equation is discretized 
using the same procedure as was used for the pressure equation in miscible 
displacement. 

For this problem the instability of the front is much less severe than for miscible 
displacement. We will examine the convergence behavior of the bilinear scheme for 
two different grid sizes. In Fig. 12, we show computational results for 20 x 20 and 
40 x 40 diagonal grids and their corresponding 28 x 28 and 56 x 56 parallel grids. 
(The jagged appearance of the contours near the shock on the parallel grid results 
is caused by the interpolation to the diagonal grid.) 

The solution in this case involves considerably more structure. A one-dimen- 
sional Riemann problem analysis indicates that for the problem considered we 
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20 bY 20 DIAGONAL GRID 28 BY 28 PARALLEL GRID 
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40 BY 40 DIAGONAL GRID 56 BY 56 PARALLEL GRID 

FIG. 12. Numerical results for immiscible displacement at 0.43 PVI, bilinear scheme. 

expect a shock with shock height s = 0.44 followed by a smooth transition region 
up to the injected value of s = 1.0. All of the computational results appear to predict 
the correct shock height. The smooth structure of the solution behind the shock is 
well resolved even on the coarse grids. The two line grid computations show 
excellent agreement; there appear to be no grid orientation effects. 

6. CONCLUSIONS 

In this paper we have developed an unsplit, two-dimensional higher order 
Godunov method for a hyperbolic conservation law. The method is based on 
discontinuous bilinear approximation of the solution on each grid cell. (We note 
that although presented only for a single conservation law, the method can be 
easily extended to diagonalizable systems. An extension to general systems would 
be considerably more difficult.) 

Tests of the method on a variety of linear advection problems indicate that the 
method is more accurate than existing methods of this type. For propagation of a 
pure discontinuity, the improvement is rather modest; the improvement for smooth 
structure is fairly dramatic. In particular, other methods lead to considerable 
distortion of the shape of the profile as it is propagated; our method does a much 
better job of preserving its shape. 
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The method was applied to two model problems for flow in porous media. These 
two problems display the types of behavior that are typical of reservoir simulation 
calculations. The problems are characterized by unstable fronts. The bilinear 
scheme performs well for both problems. It allows us to treat a much wider range of 
problems than is possible with other methods. 

The major difficulty with the scheme is its complexity. This renders the scheme 
very costly for general application. However, for applications such as porous media 
flow the computational cost is dominated by the solution of an elliptic pressure 
equation. For this type of situation where a conservation law is being solved as part 
of a larger computational task, the complexity of the scheme does not present a 
problem. 
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